

SOP_001_NU_1_2_Top_Down_Standard _v2C_LF_CJD

Luca Fornelli and Caroline J. DeHart

Reagent and Materials List

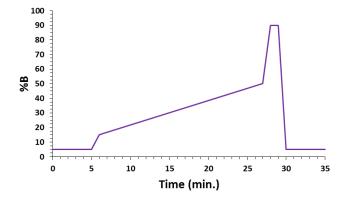
Item	Part Number	Vendor
Pierce Intact Protein Standard Mix	A35526	Thermo Fisher Scientific
Optima Grade Water	W6-4	Fisher Scientific
Optima Grade Acetonitrile	A955-4	Fisher Scientific
MS-Grade Formic Acid	PI-28905	Fisher Scientific
MabPac RP Column	302598	Thermo Fisher Scientific

Standard Components (from Pierce Intact Protein Standard Product Data Sheet)

Protein Name	Organism	Theoretical monoisotopic mass (Da)
Protein G	S. dysgalactiae	21429.75915
Protein AG (chimeric)	S. dysgalactiae	50429.84641
IGF-I LR3	H. sapiens	9105.34872
Thioredoxin	H. sapiens	11858.04393
Carbonic Anhydrase II	B. taurus	28963.6881
Exo Klenow	E. coli	67959.42515

Preparation

- Dilute one 76 μg vial into 100 μL of Solvent A (95% Optima H₂O, 5 % Optima Acetonitrile, 0.2% MS-grade formic acid), for a final concentration of 0.76 μg/μL.
- Mix thoroughly by pipetting, then transfer to a clean autosampler vial. The standard is now ready for use.
- A standard prepared in this way should be stable for up to three days at 4 °C (before significant protein oxidation becomes evident).


LC Parameters

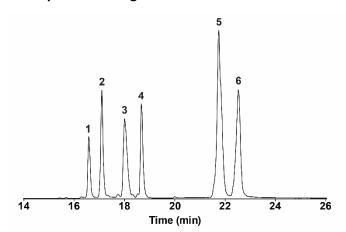
- Solvent A: 0.1% MS-grade formic acid in Optima H₂O
- Solvent B: 0.1% MS-grade formic acid in Optima Acetonitrile
- Column Parameters:
 - 4 μm pore size, 1.0 mm I.D., 150 mm length
 - Injection volume: 1.5 μL (1.14 μg loaded)

• Gradient Parameters: 150 μL/min flow rate, with temperature maintained at 60 °C

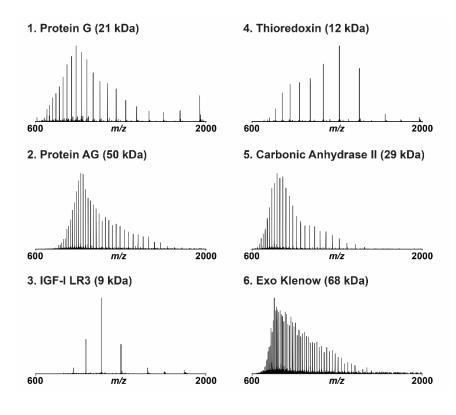
Time (min.)	% B	Curve
0.0	5.0	
5.0	5.0	0% in 5 min.
6.0	15.0	10% in 1 min.
27.0	50.0	35% in 21 min.
28.0	90.0	40% in 1 min.
29.0	90.0	0% in 1 min.
30.0	5.0	85% in 1 min.
35.0	5.0	0% in 5 min.

MS Parameters

Instrument Tuning and Method Parameters:

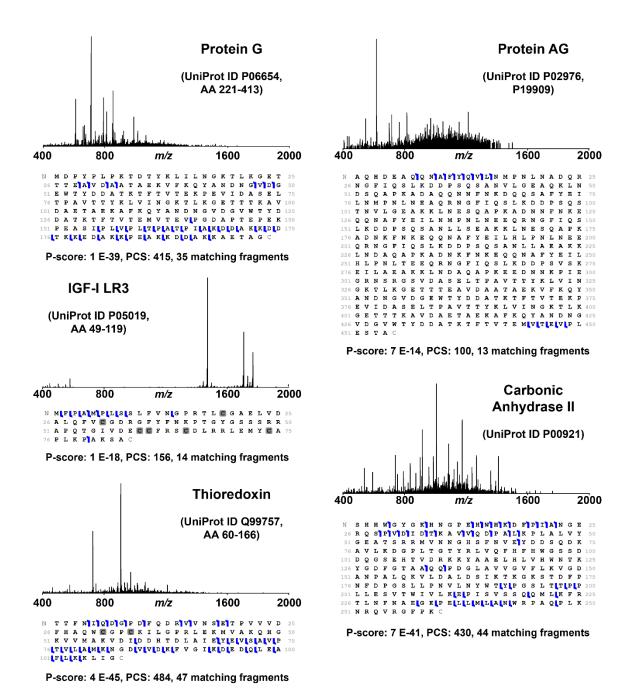

(All in positive and profile mode, with 15.0 V source CID. "Protein mode" on, set at 2 mtorr.)

FT MS1 Parameters	Scan Range (m/z)	500.00 - 2000.00
(15k RP)	Microscans	5
Full Scan	Max Inject Time (ms)	50.00
Normal mass range	MS1 AGC Target	5.00e +05
FT MS2 Parameters	Activation type	HCD
Scan range	Define <i>m/z</i> range	400-2000
(60k RP)	Default charge state	10
Quadrupole isolation ON	Isolation Width (m/z)	3.0
Top 2, dd	Normalized Collision Energy	22.0
Isolation offset OFF	Microscans	4
Supplemental activation OFF	Max Inject Time (ms)	800.00
Charge Filter: 6 ≤ z ≤ 24	MS2 AGC Target	2.00e+05


Data Interpretation and Analysis

• Example Chromatogram:

Example Chromatograms: Typical FT MS1 base peak chromatogram of the Pierce Intact Protein Standard on the MabPac RP column, showing six separate eluted protein peaks (1. Protein G, 2. Protein AG, 3. IGF-I LR3, 4. Thioredoxin, 5. Carbonic Anhydrase II, 6. Exo Klenow). The elution order and relative height ratio of all protein peaks should remain consistent. The examples shown were obtained on an Orbitrap Fusion Lumos, using the LC and MS parameters described above.


Example FT MS1 spectra:

Example FT MS1 spectra: Averaged FTMS1 spectra for each of the six peaks in the above chromatogram, showing the characteristic isotopic peak distributions for each protein.

Example FT MS2 spectra:

Example FT MS2 spectra: Single-scan fragmentation spectra for Protein G, Protein AG, IGF-I LR3, Thioredoxin, and Carbonic Anhydrase II from the dataset shown above. The fragment ion masses from each of the above spectra were deconvoluted using the Xtract algorithm (Thermo) and searched against the respective protein sequences using ProSight Lite.

Data Analysis Methods:

- ProSight Lite: The software is available for free download at http://prosightlite.northwestern.edu/. A detailed protocol for the analysis of simple protein mixtures with Xtract and ProSight Lite can be found at https://link.springer.com/content/pdf/10.1007%2F978-1-4939-6783-4 18.pdf
- **ProSight PC 4.0:** A "Standards" search database for high-throughput data analysis of the Pierce Intact Protein Standard with ProSight PC 4.0 is available for download here: http://proteinaceous.net/database-warehouse/
- NRTDP TDPortal: A custom workflow for high-throughput analysis of the Pierce Intact Protein Standard is available on the TDPortal Quest-based, high-performance computing environment available through NRTDP and Northwestern University. User accounts can be requested at http://nrtdp.northwestern.edu/tdportal-request/. A detailed protocol for data analysis on TDPortal by external users (NRTDP SOP_004) can be found at http://nrtdp.northwestern.edu/wp-content/uploads/2017/01/ExternalUserJan10.pdf

Acknowledgements: This protocol was developed with support from Thermo Fisher Scientific and the National Institute of General Medical Sciences **P41GM108569** for the National Resource for Translational and Developmental Proteomics (NRTDP) based at Northwestern University.